On a question of B.J. Baker and M. Laidacker concerning disjoint compacta in \(\mathbb{R}^N\)
From MaRDI portal
Publication:2691867
DOI10.1016/j.topol.2022.108376OpenAlexW4312008274MaRDI QIDQ2691867
Publication date: 30 March 2023
Published in: Topology and its Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2203.03267
embeddingdimensionEuclidean spaceCantor settame embeddingwild embeddingMenger compactumequivalence of embeddingsdisjoint embeddingsdemension (= dimension of embedding)
Embeddings and immersions in topological manifolds (57N35) Wild embeddings (57M30) Flatness and tameness of topological manifolds (57N45)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Uncountably many pairwise disjoint copies of one metrizable compactum in another
- Local contractibility of the homeomorphism group of \(\mathbb R^n\)
- One-dimensional continuous curves and a homogeneity theorem
- Tame Cantor sets in \(E^ 3\)
- Taming the Cantor fence
- Wild high-dimensional Cantor fences in \(\mathbb{R}^n\). I
- Concerning uncountable families of \(n\)-cells in \(E^ n\)
- Embeddings of surfaces in \(E^ 3\)
- Generalization of a construction of Antoine
- An uncountable family of copies of a non-chainable tree-like continuum in the plane
- Small isotopies in euclidean spaces and 3-manifolds
- Embedding Uncountably Many Mutually Exclusive Continua into Euclidean Space
- On the simultaneous embedding of uncountably many distinct wild arcs with one wild endpoint in $E^3$, a geometric approach
- Embeddings of surfaces in euclidean three-space
- Shorter Notes: Sticky Arcs in E n (n 4)
- Embeddings of (𝑛-1)-spheres in Euclidean 𝑛-space
- Disjoint embeddings of compacta
- Sticky Cantor sets in ℝd
- On uncountable collections of continua and their span
- On the work of L. V. Keldysh and her seminar
- Each Disk in E 3 Contains a Tame Arc
- Tangled Embeddings of One-Dimensional Continua
- Families of Arcs in E 3
- On Embeddings of Compacta in Euclidean Space
- LOCAL CONTRACTIBILITY OF THE GROUP OF HOMEOMORPHISMS OF A MANIFOLD
- An Imbedding Problem
- Universalmengen bezüglich der Lage im $E^n$
- Ein eindimensionales Kompaktum in $E^3$, das sich nicht lagetreu in die Mengersche Universalkurve einbetten läβt
- A Generalization of the Dog Bone Space to E n
- Taming Cantor sets in 𝐸ⁿ
- Characterizing 𝑘-dimensional universal Menger compacta
- A 4-dimensional 1-LCC shrinking theorem
This page was built for publication: On a question of B.J. Baker and M. Laidacker concerning disjoint compacta in \(\mathbb{R}^N\)