The Hartree and Hartree-Fock equations in Lebesgue \(L^p\) and Fourier-Lebesgue \(\widehat{L}^p\) spaces
DOI10.1007/S00023-022-01234-5OpenAlexW3094115251MaRDI QIDQ2691891
Divyang G. Bhimani, Saikatul Haque
Publication date: 30 March 2023
Published in: Annales Henri Poincaré (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1910.02502
Function spaces arising in harmonic analysis (42B35) Ill-posed problems for PDEs (35R25) NLS equations (nonlinear Schrödinger equations) (35Q55) PDEs in connection with quantum mechanics (35Q40) Existence problems for PDEs: global existence, local existence, non-existence (35A01) Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness (35A02)
Related Items (1)
Cites Work
- Unnamed Item
- Sharp well-posedness and ill-posedness results for a quadratic nonlinear Schrödinger equation
- The global Cauchy problem for the NLS and NLKG with small rough data
- Functions operating on modulation spaces and nonlinear dispersive equations
- Well-posedness for semi-relativistic Hartree equations of critical type
- Periodic Korteweg-de Vries equation with measures as initial data
- Existence of Hartree-Fock excited states for atoms and molecules
- Trilinear \(L^p\) estimates with applications to the Cauchy problem for the Hartree-type equation
- Multilinear estimates with applications to nonlinear Schrödinger and Hartree equations in \(\widehat{L^p}\)-spaces
- Decay and scattering in energy space for the solution of weakly coupled Schrödinger-Choquard and Hartree-Fock equations
- Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations
- Global well-posedness for fractional Hartree equation on modulation spaces and Fourier algebra
- Conditions for the absolute convergence of Fourier integrals
- Dynamical collapse of white dwarfs in Hartree- and Hartree-Fock theory
- Inequalities for strongly singular convolution operators
- A NOTE ON THE NONLINEAR SCHRÖDINGER EQUATION IN WEAK LpSPACES
- On the Cauchy Problem of Fractional Schrödinger Equation with Hartree Type Nonlinearity
- Higher-order Schrödinger and Hartree–Fock equations
- Asymptotics for large time of solutions to the nonlinear Schrodinger and Hartree equations
- Endpoint Strichartz estimates
- Ill-Posedness of the Cubic Nonlinear Half-Wave Equation and Other Fractional NLS on the Real Line
- Modulation Spaces and Nonlinear Evolution Equations
- Cauchy problem of nonlinear Schrödinger equation with initial data in Sobolev space 𝑊^{𝑠,𝑝} for 𝑝<2
- Remark on the local ill-posedness for KdV equation
- Global solutions to the Hartree equation for large L^{p}-initial data
- The Hartree–Fock equations in modulation spaces
- Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity
- On the Cauchy problem for the Hartree type equation in the Wiener algebra
This page was built for publication: The Hartree and Hartree-Fock equations in Lebesgue \(L^p\) and Fourier-Lebesgue \(\widehat{L}^p\) spaces