Coupled Kähler-Einstein and Hermitian-Yang-Mills equations
From MaRDI portal
Publication:2692164
DOI10.1016/j.bulsci.2023.103232OpenAlexW4318042563MaRDI QIDQ2692164
Publication date: 21 March 2023
Published in: Bulletin des Sciences Mathématiques (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2212.01043
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics
- Kähler-Einstein metrics along the smooth continuity method
- Coupled equations for Kähler metrics and Yang-Mills connections
- Infinite determinants, stable bundles and curvature
- Extremal Kähler metrics and complex deformation theory
- Kähler-Ricci flow, Kähler-Einstein metric, and K-stability
- Hermitian-Einstein connections and stable vector bundles over compact complex surfaces
- A new proof of a theorem of Narasimhan and Seshadri
- An obstruction to the existence of Einstein Kaehler metrics
- Nontrivial examples of coupled equations for Kähler metrics and Yang-Mills connections
- Delta invariants of projective bundles and projective cones of Fano type
- On the Kähler-Yang-Mills-Higgs equations
- The existence of supersymmetric string theory with torsion
- Stable and unitary vector bundles on a compact Riemann surface
- A momentum construction for circle-invariant Kähler metrics
- Sur la Structure du Groupe d’Homéomorphismes Analytiques d’une Certaine Variété Kaehlérinne
- Anti Self-Dual Yang-Mills Connections Over Complex Algebraic Surfaces and Stable Vector Bundles
- On the ricci curvature of a compact kähler manifold and the complex monge-ampére equation, I
- Extremal Kähler metrics on minimal ruled surfaces
- On the existence of hermitian-yang-mills connections in stable vector bundles
- The Yang-Mills equations over Riemann surfaces
- A variational approach to the Yau–Tian–Donaldson conjecture
- K‐Stability and Kähler‐Einstein Metrics
- The Ding Functional, Berndtsson Convexity and Moment Maps
- Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities
- Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \boldmath2𝜋
- Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \boldmath2𝜋 and completion of the main proof
This page was built for publication: Coupled Kähler-Einstein and Hermitian-Yang-Mills equations