Different degrees of non-compactness for optimal Sobolev embeddings
From MaRDI portal
Publication:2692701
DOI10.1016/j.jfa.2023.109880OpenAlexW4320718516MaRDI QIDQ2692701
Publication date: 22 March 2023
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2211.07282
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Riesz operators; eigenvalue distributions; approximation numbers, (s)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators (47B06) Compactness in Banach (or normed) spaces (46B50)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Eigenvalues, embeddings and generalised trigonometric functions
- Approximation of zonoids by zonotopes
- Measure of noncompactness of Sobolev embeddings on strip-like domains
- Maximal non-compactness of Sobolev embeddings
- Measures of non-compactness and Sobolev-Lorentz spaces
- Strict s-numbers of non-compact Sobolev embeddings into continuous functions
- Finitely strictly singular operators in harmonic analysis and function theory
- Espaces d'interpolation et théorème de Soboleff
- Topics in Banach Space Theory
- Optimal Sobolev imbeddings
- Essential norms and localization moduli of Sobolev embeddings for general domains
- s-Numbers of operators in Banach spaces
- Finite dimensional subspaces of $L_{p}$
- Measures of non–compactness of classical embeddings of Sobolev spaces
- Compactness of Sobolev embeddings and decay of norms
- Asymptotic Geometric Analysis, Part I
- History of Banach Spaces and Linear Operators
- Compactness of Sobolev imbeddings involving rearrangement-invariant norms
- Sobolev Spaces
- Function Spaces
This page was built for publication: Different degrees of non-compactness for optimal Sobolev embeddings