JKO estimates in linear and non-linear Fokker-Planck equations, and Keller-Segel: \(L^p\) and Sobolev bounds
From MaRDI portal
Publication:2693542
DOI10.4171/AIHPC/36MaRDI QIDQ2693542
Filippo Santambrogio, Simone Di Marino
Publication date: 21 March 2023
Published in: Annales de l'Institut Henri Poincaré. Analyse Non Linéaire (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1911.10999
time-discretizationWasserstein spaceparabolic PDEsSobolev boundsJordan-Kinderlehrer-Otto (JKO) scheme
A priori estimates in context of PDEs (35B45) Theoretical approximation in context of PDEs (35A35) Cell movement (chemotaxis, etc.) (92C17) Fokker-Planck equations (35Q84)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Uniqueness for Keller-Segel-type chemotaxis models
- \{Euclidean, metric, and Wasserstein\} gradient flows: an overview
- Initiation of slime mold aggregation viewed as an instability
- Volume effects in the Keller--Segel model: energy estimates preventing blow-up
- The parabolic-parabolic Keller-Segel model in \(\mathbb R^2\)
- A user's guide to PDE models for chemotaxis
- A convexity principle for interacting gases
- Weighted ultrafast diffusion equations: from well-posedness to long-time behaviour
- Optimal critical mass in the two dimensional Keller-Segel model in \(R^2\)
- Lipschitz estimates on the JKO scheme for the Fokker-Planck equation on bounded convex domains
- On the Jordan-Kinderlehrer-Otto scheme
- EXISTENCE AND UNIQUENESS OF EQUILIBRIUM FOR A SPATIAL MODEL OF SOCIAL INTERACTIONS*
- A hybrid variational principle for the Keller–Segel system in ℝ2
- Infinite time aggregation for the critical Patlak‐Keller‐Segel model in ℝ2
- Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak–Keller–Segel Model
- A Family of Nonlinear Fourth Order Equations of Gradient Flow Type
- Polar factorization and monotone rearrangement of vector‐valued functions
- On Explosions of Solutions to a System of Partial Differential Equations Modelling Chemotaxis
- The Variational Formulation of the Fokker--Planck Equation
- $L^\infty $ estimates for the JKO scheme in parabolic-elliptic Keller-Segel systems
- Degenerate nonlinear parabolic equations with discontinuous diffusion coefficients
- \(BV\) estimates in optimal transportation and applications
This page was built for publication: JKO estimates in linear and non-linear Fokker-Planck equations, and Keller-Segel: \(L^p\) and Sobolev bounds