Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians
From MaRDI portal
Publication:2696709
DOI10.3934/era.2022094OpenAlexW4226272777WikidataQ114022597 ScholiaQ114022597MaRDI QIDQ2696709
Publication date: 17 April 2023
Published in: Electronic Research Archive (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.3934/era.2022094
Graphs and linear algebra (matrices, eigenvalues, etc.) (05C50) Measures of information, entropy (94A17)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Note on von Neumann and Rényi entropies of a graph
- Approximations for von Neumann and Rényi entropies of graphs using the Euler-Maclaurin formula
- On the von Neumann entropy of a graph
- Symmetric Laplacians, quantum density matrices and their von-Neumann entropy
- The Euler-Maclaurin and Taylor Formulas: Twin, Elementary Derivations
- An Elementary View of Euler's Summation Formula
- The Laplacian Spectrum of a Graph
- The von Neumann Theil index: characterizing graph centralization using the von Neumann index
- Kirchhoff's Matrix‐Tree Theorem Revisited: Counting Spanning Trees with the Quantum Relative Entropy
- On the von Neumann entropy of graphs
- First-Order Perturbation Theory for Eigenvalues and Eigenvectors
- The Euler-Maclaurin Formula and Sums of Powers