Explicit computation of a Galois representation attached to an eigenform over \(\mathrm{SL}_3\) from the \(\mathrm{H}_{\acute{\mathrm{e}}\mathrm{t}}^2\) of a surface
DOI10.1007/s10208-021-09505-zOpenAlexW4206708488MaRDI QIDQ2697395
Publication date: 12 April 2023
Published in: Foundations of Computational Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1810.05885
algorithmsurfaceunitary groupGalois representationétale cohomologyautomorphic formdévissage\(\mathrm{GL}_3\)
Computational aspects of algebraic surfaces (14Q10) Jacobians, Prym varieties (14H40) Other groups and their modular and automorphic forms (several variables) (11F55) Étale and other Grothendieck topologies and (co)homologies (14F20) Elliptic surfaces, elliptic or Calabi-Yau fibrations (14J27) Algebraic number theory computations (11Y40) Computational aspects of algebraic curves (14Q05) Galois representations (11F80) Values of arithmetic functions; tables (11Y70)
Related Items (1)
Uses Software
Cites Work
- Unnamed Item
- On the rigid cohomology of certain Shimura varieties
- Identifying Frobenius elements in Galois groups
- Calculability of étale cohomology modulo \(\ell\)
- On torsion in the cohomology of locally symmetric varieties
- Cohomologie étale. Seminaire de géométrie algébrique du Bois-Marie SGA 4 1/2 par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier
- A non-selfdual automorphic representation of \(\text{GL}_3\) and a Galois representation
- The Magma algebra system. I: The user language
- Companion forms and explicit computation of \(\mathrm{PGL}_2\) number fields with very little ramification
- Computation of étale cohomology on curves in single exponential time
- Computational Aspects of Modular Forms and Galois Representations
- Néron Models
- Gersten's conjecture and the homology of schemes
- Certification of modular Galois representations
- Hensel-lifting torsion points on Jacobians and Galois representations
- Computing Néron–Severi groups and cycle class groups
This page was built for publication: Explicit computation of a Galois representation attached to an eigenform over \(\mathrm{SL}_3\) from the \(\mathrm{H}_{\acute{\mathrm{e}}\mathrm{t}}^2\) of a surface