On a conjecture of Ashbaugh and Benguria about lower eigenvalues of the Neumann Laplacian
From MaRDI portal
Publication:2697579
DOI10.1007/s00208-021-02336-xOpenAlexW2888818641WikidataQ113906081 ScholiaQ113906081MaRDI QIDQ2697579
Publication date: 12 April 2023
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1808.09520
Estimates of eigenvalues in context of PDEs (35P15) Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation (35J05)
Related Items
Estimates for eigenvalues of the Neumann and Steklov problems ⋮ A sharp estimate for Neumann eigenvalues of the Laplace–Beltrami operator for domains in a hemisphere ⋮ The upper bound of the harmonic mean of the Steklov eigenvalues in curved spaces ⋮ Maximizers beyond the hemisphere for the second Neumann eigenvalue
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sharp stability of some spectral inequalities
- Inequalities for sums of reciprocals of eigenvalues
- The first nonzero eigenvalue of Neumann problem on Riemannian manifolds
- A universal bound for the low eigenvalues of Neumann Laplacians on compact domains in a Hadamard manifold
- Sharp Upper Bound to the First Nonzero Neumann Eigenvalue for Bounded Domains in Spaces of Constant Curvature
- Universal Bounds for the Low Eigenvalues of Neumann Laplacians inNDimensions
- 7 Spectral inequalities in quantitative form