Spectrum of the transfer matrices of the spin chains associated with the \(A^{(2)}_3\) Lie algebra
From MaRDI portal
Publication:2699070
DOI10.1007/s00220-022-04566-9OpenAlexW4312106245MaRDI QIDQ2699070
Junpeng Cao, Tao Yang, Pei Sun, Xiaotian Xu, Kun Hao, Guang-Liang Li, Wen-Li Yang
Publication date: 26 April 2023
Published in: Communications in Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2201.00963
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Generalized \(q\)-Onsager algebras and boundary affine Toda field theories
- The \(q\)-deformed analogue of the Onsager algebra: beyond the Bethe ansatz approach
- Modified algebraic Bethe ansatz for XXZ chain on the segment - I: Triangular cases
- Modified algebraic Bethe ansatz for XXZ chain on the segment. II: General cases
- Quantum inverse problem method. I
- Separation of variables in the open \(XXX\) chain
- Quantum R matrix for the generalized Toda system
- Exact solution of the Heisenberg XXZ model of spin s
- The spectrum of the transfer matrices connected with Kac-Moody algebras
- Yang-Baxter equation and representation theory. I
- \(C_n^{(1)}\), \(D_n^{(1)}\) and \(A_{2n-1}^{(2)}\) reflection \(K\)-matrices
- The integrable quantum group invariant \(A_{2 n - 1}^{(2)}\) and \(D_{n + 1}^{(2)}\) open spin chains
- Factorization identities and algebraic Bethe ansatz for \({D}_2^{(2)}\) models
- The half-infinite XXZ chain in Onsager's approach
- Heisenberg XXX model with general boundaries: eigenvectors from algebraic Bethe ansatz
- Functional Bethe ansatz methods for the openXXXchain
- New $D_{n+1}^{(2)}$ K-matrices with quantum group symmetry
- Non-diagonal open spin-1/2XXZquantum chains by separation of variables: complete spectrum and matrix elements of some quasi-local operators
- The Bethe Wavefunction
- Analytical Bethe ansatz for a A2n-1(2), Bn(1), Cn(1), Dn(1)quantum-algebra-invariant open spin chains
- Boundary conditions for integrable quantum systems
- On , , , , , , and reflectionK-matrices
- The algebraic Bethe ansatz for open vertex models
- Exact spectrum of the XXZ open spin chain from theq-Onsager algebra representation theory
- Off-Diagonal Bethe Ansatz for Exactly Solvable Models
- Towards the solution of an integrable $D_{2}^{(2)}$ spin chain
- Integrability of the \(D^2_n\) vertex models with open boundary
- Modified algebraic Bethe ansatz for XXZ chain on the segment. III. Proof