Martin’s Axiom does not imply perfectly normal non-archimedean spaces are metrizable
DOI10.1090/S0002-9939-00-04940-6zbMath0961.03040OpenAlexW1511502843WikidataQ114009910 ScholiaQ114009910MaRDI QIDQ2701598
Publication date: 19 February 2001
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/s0002-9939-00-04940-6
boxperfect spaceMartin's axiomdiamondmetrizable spacenon-archimedean spacecombinatorial principlestree basearchvillainforcing special tree
Metric spaces, metrizability (54E35) Continuum hypothesis and Martin's axiom (03E50) Consistency and independence results in general topology (54A35) Other combinatorial set theory (03E05) Peculiar topological spaces (54G99)
Related Items (2)
Cites Work
- The orderability of nonarchimedean spaces
- Set theory. An introduction to independence proofs
- Some consequences of MA + non wKH
- Proper forcing
- A Note on Small Baire Spaces
- Trees, subtrees and order types
- Perfectly normal non-metrizable non-Archimedean spaces are generalized Souslin lines
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Martin’s Axiom does not imply perfectly normal non-archimedean spaces are metrizable