Une preuve courte du principe de Selberg pour un groupe 𝑝-adique
From MaRDI portal
Publication:2701603
DOI10.1090/S0002-9939-00-05834-2zbMath0978.22018OpenAlexW1595231332MaRDI QIDQ2701603
Publication date: 19 February 2001
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/s0002-9939-00-05834-2
Analysis on (p)-adic Lie groups (22E35) Representations of Lie and linear algebraic groups over local fields (22E50) (K_0) of other rings (19A49)
Related Items (2)
Cocenters of \(p\)-adic groups. III: Elliptic and rigid cocenters ⋮ Euler-Poincaré pairing, Dirac index and elliptic pairing for Harish-Chandra modules
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cuspidal geometry of p-adic groups
- Representations of groups over close local fields
- Orbital integrals on p-adic groups: A proof of the Howe conjecture
- Cyclic homology and the Selberg principle
- Cyclic homology of totally disconnected groups acting on buildings
- On the \(K_0\) of a \(p\)-adic group
- Computation of certain induced characters of P-adic groups
- The cyclic homology of p-adic reductive groups.
This page was built for publication: Une preuve courte du principe de Selberg pour un groupe 𝑝-adique