A note on asymptotically isometric copies of $l^1$ and $c_0$
From MaRDI portal
Publication:2701630
DOI10.1090/S0002-9939-00-05786-5zbMath0983.46007arXivmath/0003151MaRDI QIDQ2701630
Publication date: 19 February 2001
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0003151
fixed point propertycontractive mappingsM-idealsasymptotically isometric \(\ell^1\)-copiesJames' distortionL-embedded spacesL-summandsM-embedded spaces
Fixed-point theorems (47H10) Geometry and structure of normed linear spaces (46B20) Isomorphic theory (including renorming) of Banach spaces (46B03) Isometric theory of Banach spaces (46B04)
Related Items
The \(\tau\)-fixed point property for left reversible semigroups ⋮ Some isometric properties of subspaces of function spaces ⋮ Almost square Banach spaces ⋮ Renormings and fixed point property in non-commutative \(L_1\)-spaces. II: Affine mappings ⋮ Diameter two properties, convexity and smoothness ⋮ Compactness and the fixed point property in \(\ell_{1}\) ⋮ Renormings and the fixed point property in non-commutative \(L_{1}\)-spaces ⋮ Some fixed point results on \(L\)-embedded Banach spaces ⋮ The Kadec–Pełczyński–Rosenthal subsequence splitting lemma for JBW*-triple preduals ⋮ \(L\)-embedded Banach spaces and measure topology
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(M\)-ideals in Banach spaces and Banach algebras
- Reflexivity and the fixed-point property for nonexpansive maps
- Uniformly non-square Banach spaces
- Sous-Espaces Bien Disposes de L 1 -Applications
- ESPACES L-FACTEURS DE LEURS BIDUAUX: BONNE DISPOSITION, MEILLEURE APPROXIMATION, ET PROPRIETE DE RADON-NIKODYM
- A Fixed Point Free Nonexpansive Map
- L-summands in their biduals have Pełczyński's property (V*)
- Every nonreflexive subspace of $L_1[0,1$ fails the fixed point property]
- The optimality of James’s distortion theorems