Hyperkähler metrics on cotangent bundles

From MaRDI portal
Publication:2706826

DOI10.1515/crll.2001.017zbMath0976.53049OpenAlexW2048764337MaRDI QIDQ2706826

Birte Feix

Publication date: 5 December 2001

Published in: Journal für die reine und angewandte Mathematik (Crelles Journal) (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1515/crll.2001.017




Related Items

Symplectic and Hyperkähler ImplosionSymmetries of curved superspace in five dimensionsOn 3-dimensional CR manifolds and twistorsSupersymmetry and cotangent bundle over non-compact exceptional Hermitian symmetric spaceThe universal connection for principal bundles over homogeneous spaces and twistor space of coadjoint orbits\( \mathcal{N} = 2 \) supersymmetric sigma-models and dualityOn the hyperkähler/quaternion Kähler correspondenceOn compactified harmonic/projective superspace, 5D superconformal theories, and all thatHyper-Kähler sigma models on (co)tangent bundles with \(\text{SO}(n)\) isometryQuaternion-Kähler manifolds near maximal fixed point sets of \(S^1\)-symmetriesTwistor spaces of Hyperkähler manifolds with \(S^{1}\)-actions.From complex contact structures to real almost contact 3-structuresThe adapted hyper-Kähler structure on the crown domainCanonical complex extensions of Kähler manifoldsC-projective symmetries of submanifolds in quaternionic geometryNew supersymmetric {\(\sigma\)}-model dualityHyper-Kähler and quaternionic Kähler manifolds with \(S^{1}\)-symmetriesModuli spaces of framed instanton bundles on \(\mathbb {CP}^3\) and twistor sections of moduli spaces of instantons on \(\mathbb C^2\)Twist geometry of the c-mapRelating harmonic and projective descriptions of \( \mathcal{N}=2 \) nonlinear sigma modelsNonlinear Dirac operator and quaternionic analysisThe quaternionic/hypercomplex-correspondenceHyperkähler metrics near Lagrangian submanifolds and symplectic groupoidsProjective geometry and the quaternionic Feix–Kaledin constructionThe Hyperholomorphic Line BundleDeformed Hermitian Yang–Mills connections, extended gauge group and scalar curvature



Cites Work