QUANTILE APPROXIMATION FOR ROBUST STATISTICAL ESTIMATION AND k-ENCLOSING PROBLEMS
DOI10.1142/S0218195900000334zbMath0969.68168MaRDI QIDQ2708040
David M. Mount, Ruth Silverman, Nathan S. Netanyahu, Angela Y. Wu, Christine D. Piatko
Publication date: 5 July 2001
Published in: International Journal of Computational Geometry & Applications (Search for Journal in Brave)
robust estimationminimum volume ellipsoidLMS regressionminimum enclosing diskminimum volume annulus estimatorminimum volume ball
Nonparametric regression and quantile regression (62G08) Nonparametric robustness (62G35) Computer graphics; computational geometry (digital and algorithmic aspects) (68U05) Numerical aspects of computer graphics, image analysis, and computational geometry (65D18)
Related Items (7)
Cites Work
- The feasible set algorithm for least median of squares regression
- Enclosing \(k\) points in the smallest axis parallel rectangle
- High breakdown-point and high efficiency robust estimates for regression
- On enclosing k points by a circle
- A simple algorithm for computing the smallest enclosing circle
- Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden
- Efficient partition trees
- Fitting a set of points by a circle
- Iterated nearest neighbors and finding minimal polytopes
- A subexponential bound for linear programming
- Finding k points with minimum diameter and related problems
- Least Median of Squares Regression
- Finding minimal enclosing boxes
- An optimal algorithm for finding minimal enclosing triangles
- On Linear-Time Deterministic Algorithms for Optimization Problems in Fixed Dimension
- Minimum Covering Ellipses
- Optimal design: Some geometrical aspects of D-optimality
- Applications of Parametric Searching in Geometric Optimization
This page was built for publication: QUANTILE APPROXIMATION FOR ROBUST STATISTICAL ESTIMATION AND k-ENCLOSING PROBLEMS