Finite element approximation of piezoelectric plates
DOI<link itemprop=identifier href="https://doi.org/10.1002/1097-0207(20010228)50:6<1469::AID-NME82>3.0.CO;2-I" /><1469::AID-NME82>3.0.CO;2-I 10.1002/1097-0207(20010228)50:6<1469::AID-NME82>3.0.CO;2-IzbMath0982.74063OpenAlexW2082892795MaRDI QIDQ2709621
Paolo Bisegna, Carlo Lovadina, Ferdinando Auricchio
Publication date: 8 April 2002
Full work available at URL: https://doi.org/10.1002/1097-0207(20010228)50:6<1469::aid-nme82>3.0.co;2-i
mixed finite elementsfinite element schememembrane problembending problemReissner-Mindlin-type piezoelectric plate
Plates (74K20) Finite element methods applied to problems in solid mechanics (74S05) Electromagnetic effects in solid mechanics (74F15)
Related Items (6)
Cites Work
- On the locking phenomenon for a class of elliptic problems
- On variational approaches to plate models
- A shear deformable plate element with an exact thin limit
- High frequency vibrations of piezoelectric crystal plates
- On a certain mixed variational theorem and a proposed application
- AN ASYMPTOTIC THEORY OF THIN PIEZOELECTRIC PLATES
- Mixed and Hybrid Finite Element Methods
- An Exact Three-Dimensional Solution for Simply Supported Rectangular Piezoelectric Plates
This page was built for publication: Finite element approximation of piezoelectric plates