Exploiting the Laguerre iteration for solving the symmetric tridiagonal eigenproblem
zbMATH Open0990.65046MaRDI QIDQ2717661
José M. Badía Contelles, Antonio M. Vidal Maciá
Publication date: 2 April 2002
Published in: Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería (Search for Journal in Brave)
performancealgorithmscomparison of methodseigenvaluesroot-finding methodsbisection methodQR iterationsymmetric tridiagonal matricesdivide-and-conquer algorithmLaguerre iterationrank-one modifications
Computational methods for sparse matrices (65F50) Numerical computation of eigenvalues and eigenvectors of matrices (65F15) Complexity and performance of numerical algorithms (65Y20)
Related Items (6)
Recommendations
- Title not available (Why is that?) 👍 👎
- Title not available (Why is that?) 👍 👎
- A scalable eigenvalue solver for symmetric tridiagonal matrices 👍 👎
- A new algorithm for the symmetric tridiagonal eigenvalue problem 👍 👎
- A parallel iterative method for solving symmetric tridiagonal extreme eigenpair problems 👍 👎
- An algorithm for the generalized symmetric tridiagonal eigenvalue problem 👍 👎
- Implementing the Parallel Quasi-Laguerre's Algorithm for Symmetric Tridiagonal Eigenproblems 👍 👎
- The Laguerre Iteration in Solving the Symmetric Tridiagonal Eigenproblem, Revisited 👍 👎
- A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem 👍 👎
- Quasi-Laguerre Iteration in Solving Symmetric Tridiagonal Eigenvalue Problems 👍 👎
This page was built for publication: Exploiting the Laguerre iteration for solving the symmetric tridiagonal eigenproblem
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q2717661)