Inversion of circulant matrices over $\mathbf{Z}_m$
From MaRDI portal
Publication:2719071
DOI10.1090/S0025-5718-00-01235-7zbMath0977.65022OpenAlexW1763997349MaRDI QIDQ2719071
Dario Andrea Bini, Gianna M. Del Corso, Luciano Margara, Giovanni Manzini
Publication date: 14 May 2001
Published in: Mathematics of Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/s0025-5718-00-01235-7
Laurent seriescirculant matricesmatrix inversioninversion algorithmsbi-infinite Toeplitz matricesinversion over rings
Theory of matrix inversion and generalized inverses (15A09) Direct numerical methods for linear systems and matrix inversion (65F05) Matrices of integers (15B36)
Related Items
Inversion of two level circulant matrices over \(\mathbb{Z}_{p}\), A solution to certain polynomial equations with applications to nonlinear fitting, Algorithms for finding inverse of two patterned matrices over \(\mathbb{Z}_p\), The circulant hash revisited, Circulant matrices and affine equivalence of monomial rotation symmetric Boolean functions, Cryptanalysis of a Hash Function Based on Norm Form Equations, The inverse of circulant matrices over \(\mathrm{GF}(2^m )\)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Circulants, inversion of circulants, and some related matrix algebras
- Algebraic properties of cellular automata
- Linear cellular automata over \(Z_ m\)
- Exact results for deterministic cellular automata with additive rules
- On the complexity of multiplication in finite fields
- Self-similarity of linear cellular automata
- Invertible linear cellular automata over \(\mathbb{Z}_m\): Algorithmic and dynamical aspects
- A complete and efficiently computable topological classification of D-dimensional linear cellular automata over \(Z_{m}\)
- Fast multiplication of large numbers