Predicted natural frequencies of two‐dimensional elastodynamic problems: a practical error estimator
DOI10.1108/02644409610152998zbMath0983.74511OpenAlexW1989897108MaRDI QIDQ2721446
Grant P. Steven, Chongbin Zhao
Publication date: 29 April 2002
Published in: Engineering Computations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1108/02644409610152998
Vibrations in dynamical problems in solid mechanics (74H45) Finite element methods applied to problems in solid mechanics (74S05) Numerical approximation of solutions of dynamical problems in solid mechanics (74H15) Error bounds for initial value and initial-boundary value problems involving PDEs (65M15)
Related Items (2)
Cites Work
- Unnamed Item
- Toward a universal h-p adaptive finite element strategy. II: A posteriori error estimation
- Toward a universal h-p adaptive finite element strategy. III: Design of h-p meshes
- A feedback finite element method with a posteriori error estimation. I: The finite element method and some basic properties of the a posteriori error estimator
- Explicit formulas for correcting finite-element predictions of natural frequencies
- A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis
- The self-equilibration of residuals and complementarya posteriori error estimates in the finite element method
- A simple error estimator and adaptive procedure for practical engineerng analysis
- The superconvergent patch recovery anda posteriori error estimates. Part 2: Error estimates and adaptivity
- A‐posteriori error estimates for the finite element method
- Error Estimates for Adaptive Finite Element Computations
- A-posteriori error estimator/corrector for natural frequencies of thin plate vibration problems
- A-posteriori error estimators/correctors for natural frequencies of membrane vibration problems
- Analytical solutions of mass transport problems for error estimation of finite/infinite element methods
This page was built for publication: Predicted natural frequencies of two‐dimensional elastodynamic problems: a practical error estimator