On the increase of computational algorithm efficiency for elasto‐plastic shell analysis
DOI10.1108/02644409710157631zbMath0983.74558OpenAlexW2133846523MaRDI QIDQ2721458
Jurica Sorić, U. Montag, Wilfried B. Krätzig
Publication date: 9 April 2002
Published in: Engineering Computations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1108/02644409710157631
finite element analysisintegration algorithmshell structureselasto-plastic behaviourconsistent tangent modulustangent matrices
Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials) (74C05) Finite element methods applied to problems in solid mechanics (74S05) Shells (74K25)
Related Items (3)
Cites Work
- Consistent tangent operators for rate-independent elastoplasticity
- On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity: Formulation and integration algorithms
- Complementary mixed finite element formulations for elastoplasticity
- On an isoparametric finite-element for composite laminates with finite rotations
- A return mapping algorithm for plane stress elastoplasticity
- [https://portal.mardi4nfdi.de/wiki/Publication:3763658 Tangentiale Steifigkeitsmatrizen bei Anwendung von Projektionsverfahren in der Elastoplastizit�tstheorie]
- A Finite‐Rotation Theory for Elastic‐Plastic Shells under Consideration of Shear Deformations
- A stabilized 9‐node non‐linear shell element
This page was built for publication: On the increase of computational algorithm efficiency for elasto‐plastic shell analysis