Analytic classification of a class of cuspidal foliations in \((\mathbb{C}^3, 0)\)
From MaRDI portal
Publication:272259
DOI10.1016/j.jde.2016.03.012zbMath1347.37092arXiv1603.03556OpenAlexW2304904239MaRDI QIDQ272259
Percy Fernández-Sánchez, Jorge Mozo-Fernández, Hernán Neciosup
Publication date: 20 April 2016
Published in: Journal of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1603.03556
Complex vector fields, holomorphic foliations, (mathbb{C})-actions (32M25) Dynamical aspects of holomorphic foliations and vector fields (37F75)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Constructing equivalences with some extensions to the divisor and topological invariance of projective holonomy
- Problèmes de modules pour des équations différentielles non linéaires du premier ordre
- Modules de feuilletages holomorphes singuliers. I: équisingularité. (Modules of singular holomorphic foliations. I: Equisingularity)
- Analytical and formal classifications of quasi-homogeneous foliations in \((\mathbb C^2, 0)\)
- Topological invariants and equidesingularization for holomorphic vector fields
- Frobenius avec singularites. I: Codimension un
- On the classification of nilpotent singularities
- Singularities of vector fields
- The analytic and formal normal form for the nilpotent singularity. The case of generalized saddle-node
- On codimension one foliations with prescribed cuspidal separatrix
- Nilpotent singularities and first integrals
- On the quasi-ordinary cuspidal foliations in \(\mathbb C^3, O\)
- Classification analytique des équations différentielles non linéaires résonnantes du premier ordre
- Groupes d'automorphismes de $({\bbfC},0)$ et équations différentielles $ydy+\cdots =0$
- Holonomie et intégrales premières
- [https://portal.mardi4nfdi.de/wiki/Publication:4299146 Classification de certains feuilletages associ�s � un cusp]
- Monodromy and topological classification of germs of holomorphic foliations
- Classification analytique des feuilletages singuliers réduits de codimension 1 en dimension n\geq 3
- [https://portal.mardi4nfdi.de/wiki/Publication:4887461 Classification analytique d'�quations diff�rentielles ydy +...=0 et espace de modules]