On Iwasawa 𝜆₃-invariants of cyclic cubic fields of prime conductor
From MaRDI portal
Publication:2723538
DOI10.1090/S0025-5718-00-01284-9zbMath0993.11056OpenAlexW1528390371MaRDI QIDQ2723538
Takashi Fukuda, Keiichi Komatsu
Publication date: 5 July 2001
Published in: Mathematics of Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/s0025-5718-00-01284-9
Units and factorization (11R27) Algebraic number theory computations (11Y40) Iwasawa theory (11R23) Cyclotomic extensions (11R18)
Related Items (1)
Cites Work
- On \({\mathbb{Z}}_ p\)-extensions of real abelian fields
- On the Stickelberger ideal and the circular units of an abelian field
- On \(p\)-adic zeta functions and \(\mathbb{Z}_p\)-extensions of certain totally real number fields
- On Iwasawa \(\lambda_p\)-invariants of relative real cyclic extensions of degree \(p\)
- Iwasawa λ3-invariants of certain cubic fields
- On the Iwasawa Invariants of Totally Real Number Fields
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: On Iwasawa 𝜆₃-invariants of cyclic cubic fields of prime conductor