Voronovskaja type approximation theorem for \(q\)-Szász-beta operators
From MaRDI portal
Publication:272496
DOI10.1016/j.amc.2014.03.020zbMath1334.41037OpenAlexW2055944666MaRDI QIDQ272496
Publication date: 20 April 2016
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.amc.2014.03.020
\(q\)-mixed operators\(q\)-Szász-beta operators\(q\)-Szász-Mirakjan-beta operatorsVoronovskaja type theorem
Difference operators (39A70) Difference equations, scaling ((q)-differences) (39A13) Approximation by positive operators (41A36) Basic hypergeometric functions (33D99)
Related Items
Rate of convergence of Szász-beta operators based on \(q\)-integers, Stancu type generalization of the \(q\)-Phillips operators, Voronovskaja Type Approximation Theorem for q-Szasz–Schurer Operators, Convergence of the \(q\)-Stancu-Szász-Beta type operators
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A note on the approximation by the \(q\)-hybrid summation integral type operators
- Korovkin-type approximation properties of bivariate \(q\)-Meyer-König and Zeller operators
- Convergence of the \(q\) analogue of Szász-Beta operators
- Some approximation properties by \(q\)-Szász-Mirakyan-Baskakov-Stancu operators
- On \(q\)-analogue of Bernstein-Schurer-Stancu operators
- On integral representations of \(q\)-gamma and \(q\)-beta functions
- The rate of convergence ofq-Durrmeyer operators for 0<q<1
- Applications of q-Calculus in Operator Theory
- Quantum calculus