\(L_{2}\) discrepancy of symmetrized generalized hammersley point sets in base \(b\)
From MaRDI portal
Publication:273467
DOI10.1016/j.jnt.2016.02.025zbMath1414.11084arXiv1511.04937OpenAlexW2963588738MaRDI QIDQ273467
Lisa M. Kritzinger, Ralph Kritzinger
Publication date: 22 April 2016
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1511.04937
Irregularities of distribution, discrepancy (11K38) General theory of distribution modulo (1) (11K06)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An improved lower bound for the \(L_2\)-discrepancy
- Fibonacci sets and symmetrization in discrepancy theory
- \(L_p\) discrepancy of generalized two-dimensional Hammersley point sets
- Symmetrization of the van der Corput generalized sequences
- The extreme and \(L^2\) discrepancies of some plane sets
- Discrépances de suites associées à un système de numération (en dimension un)
- Discrépance et diaphonie en dimension un
- L2discrepancy of generalized two-dimensional Hammersley point sets scrambled with arbitrary permutations
- Introduction to Quasi-Monte Carlo Integration and Applications
- On irregularities of distribution
- Note on irregularities of distribution
- Walsh series analysis of the \(L_2\)-discrepancy of symmetrized point sets
- \(L_p\)- and \(S_{p, q}^r B\)-discrepancy of the symmetrized van der Corput sequence and modified Hammersley point sets in arbitrary bases
This page was built for publication: \(L_{2}\) discrepancy of symmetrized generalized hammersley point sets in base \(b\)