Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

The curve of “Prym canonical” Gauss divisors on a Prym theta divisor

From MaRDI portal
Publication:2750929
Jump to:navigation, search

DOI10.1090/S0002-9947-01-02749-0zbMath0977.14013MaRDI QIDQ2750929

Robert Varley, Roy Campbell Smith

Publication date: 21 October 2001

Published in: Transactions of the American Mathematical Society (Search for Journal in Brave)


zbMATH Keywords

JacobianPrym varietiesPrym theta divisorGauss divisors


Mathematics Subject Classification ID

Jacobians, Prym varieties (14H40) Theta functions and abelian varieties (14K25)


Related Items (1)

Infinitesimal study of a factorization of the Prym map



Cites Work

  • Une relation entre deux approches du problème de Schottky. (A relation between two approaches to the Schottky problem)
  • Complex abelian varieties and theta functions
  • Sur le Probleme de Torelli pour les Varietes de Prym
  • PRYM VARIETIES: THEORY AND APPLICATIONS
  • Ample Divisors on Abelian Surfaces
  • Weddle's Surfaces, Humbert's Curves, and a Certain 4-Dimensional Abelian Variety
  • Sur les variétés de Prym des courbes tétragonales
  • THE GEOMETRY OF THE POINCARÉ THETA-DIVISOR OF A PRYM VARIETY
  • On a Theorem of Torelli
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item


This page was built for publication: The curve of “Prym canonical” Gauss divisors on a Prym theta divisor

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:2750929&oldid=15624033"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 3 February 2024, at 15:24.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki