Łojasiewicz inequalities in o-minimal structures
From MaRDI portal
Publication:276046
DOI10.1007/s00229-015-0806-yzbMath1342.14120OpenAlexW2275785640MaRDI QIDQ276046
Publication date: 26 April 2016
Published in: Manuscripta Mathematica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00229-015-0806-y
Real-analytic and semi-analytic sets (14P15) Semi-analytic sets, subanalytic sets, and generalizations (32B20) Other analytical inequalities (26D20)
Related Items (4)
Global Łojasiewicz inequalities on comparing the rate of growth of polynomial functions ⋮ Global convergence of the gradient method for functions definable in o-minimal structures ⋮ Hölder-Łojasiewicz inequalities for volumes of tame objects ⋮ Volumes of sub-level sets and the decay of oscillatory integrals
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Integral closure of ideals and equisingularity
- Bifurcation sets of functions definable in \(o\)-minimal structures
- On gradients of functions definable in o-minimal structures
- Łojasiewicz inequalities for sets definable in the structure \({\mathbb R}_{\text{exp}}\)
- Geometric categories and o-minimal structures
- On the division of distributions by polynomials
- Directional properties of sets definable in o-minimal structures
- On \(C^0\)-sufficiency of jets of potential functions
- On the Łojasiewicz numbers. II
- A gradient inequality at infinity for tame functions
- Clarke Subgradients of Stratifiable Functions
- Valeurs critiques asymptotiques d'une fonction définissable dans une structure o-minimale
- The Łojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems
- Sur le problème de la division
- Proof of the gradient conjecture of R. Thom.
This page was built for publication: Łojasiewicz inequalities in o-minimal structures