\(L^{2}\)-estimates for singular oscillatory integral operators
From MaRDI portal
Publication:276792
DOI10.1016/j.jmaa.2016.04.031zbMath1337.42009arXiv1505.05348OpenAlexW2247143033MaRDI QIDQ276792
Hayk Aleksanyan, Henrik Shahgholian, Per Sjoelin
Publication date: 4 May 2016
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1505.05348
Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Maximal functions, Littlewood-Paley theory (42B25) Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation (35J05) Harmonic analysis and PDEs (42B37)
Related Items
\(L^p\)-estimates for singular oscillatory integral operators ⋮ Some remarks on singular oscillatory integrals and convolution operators
Cites Work
- Unnamed Item
- Applications of Fourier analysis in homogenization of Dirichlet problem. III: Polygonal domains
- Hilbert integrals, singular integrals, and Radon transforms. I
- Averages over hypersurfaces. II
- Applications of Fourier analysis in homogenization of Dirichlet problem I. Pointwise estimates
- Uniform Lipschitz estimates in bumpy half-spaces
This page was built for publication: \(L^{2}\)-estimates for singular oscillatory integral operators