A converse theorem for \(\operatorname{GL}(n)\)
From MaRDI portal
Publication:277986
DOI10.1016/j.aim.2016.03.041zbMath1377.11060OpenAlexW2342098551MaRDI QIDQ277986
F. Blanchet-Sadri, M. Dambrine
Publication date: 2 May 2016
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.aim.2016.03.041
Langlands (L)-functions; one variable Dirichlet series and functional equations (11F66) Representation-theoretic methods; automorphic representations over local and global fields (11F70)
Related Items (2)
A converse theorem for degree 2 elements of the Selberg class with restricted gamma factor ⋮ A CONVERSE THEOREM WITHOUT ROOT NUMBERS
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Whittaker models of induced representations
- Conducteur des représentations du groupe linéaire
- Converse theorems for \(\text{GL}_n\)
- A correction to ``Conducteur des représentations du groupe linéaire
- Essential Whittaker functions for \(\mathrm{GL}(n)\)
- \(K\)-theory and stable algebra
- Rankin-Selberg Convolutions
- On Euler Products and the Classification of Automorphic Forms II
- Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case)
This page was built for publication: A converse theorem for \(\operatorname{GL}(n)\)