Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations
DOI10.1051/m2an:2001153zbMath1037.65054OpenAlexW2103661122MaRDI QIDQ2781528
Publication date: 20 March 2002
Published in: ESAIM: Mathematical Modelling and Numerical Analysis (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=M2AN_2001__35_6_1185_0
convergencehomogenizationHamilton-Jacobi equationsFrenkel-Kontorova modelssolid-state physicsmin-plus integral eigenvalue problem
Numerical optimization and variational techniques (65K10) Numerical methods for integral equations (65R20) Spectrum, resolvent (47A10) Numerical solutions to equations with linear operators (65J10) Applications to the sciences (65Z05) Existence theories for optimal control problems involving partial differential equations (49J20) Eigenvalue problems for integral equations (45C05)
Related Items (7)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An additive eigenvalue problem of physics related to linear programming
- The `hump' effect in solid propellant combustion
- ENDOMORPHISMS OF SEMIMODULES OVER SEMIRINGS WITH AN IDEMPOTENT OPERATION
- Periodic homogenization of Hamilton-Jacobi equations: Additive eigenvalues and variational formula
- Effective Hamiltonians and averaging for Hamiltonian dynamics. I
This page was built for publication: Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations