Some curvature pinching results for Riemannian manifolds with density
From MaRDI portal
Publication:2789879
DOI10.1090/proc/12853zbMath1334.53036arXiv1501.06079OpenAlexW1951687937WikidataQ115290859 ScholiaQ115290859MaRDI QIDQ2789879
Publication date: 2 March 2016
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1501.06079
Special Riemannian manifolds (Einstein, Sasakian, etc.) (53C25) Global Riemannian geometry, including pinching (53C20)
Related Items (4)
Needle decompositions and isoperimetric inequalities in Finsler geometry ⋮ The weighted connection and sectional curvature for manifolds with density ⋮ Sectional curvature for Riemannian manifolds with density ⋮ Locally homogeneous non-gradient quasi-Einstein 3-manifolds
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Lower diameter bounds for compact shrinking Ricci solitons
- Analysis of weighted Laplacian and applications to Ricci solitons
- On complete gradient shrinking Ricci solitons
- Sectional curvature for Riemannian manifolds with density
- Comparison geometry for the Bakry-Emery Ricci tensor
- Complete gradient shrinking Ricci solitons have finite topological type
- A generalized sphere theorem
- Some geometric properties of the Bakry-Émery-Ricci tensor
- Kähler--Ricci solitons on toric manifolds with positive first Chern class
- Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons
- Ricci curvature for metric-measure spaces via optimal transport
- Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung
- On the geometry of metric measure spaces. I
- On the geometry of metric measure spaces. II
- On complete open manifolds of positive curvature
- Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative. (Kählerian manifolds of non-negative first Chern class and Riemannian manifolds with non-negative generalized Ricci curvature)
- Geometry of shrinking Ricci solitons
- Convergence of Compact Ricci Solitons
- Manifolds with 1/4-pinched curvature are space forms
- Positive weighted sectional curvature
- Riemannian Geometry
- Complete shrinking Ricci solitons have finite fundamental group
- Existence of Gradient Kahler-Ricci Solitons
- Riemannian geometry
This page was built for publication: Some curvature pinching results for Riemannian manifolds with density