A generalization of the symmetric classical polynomials: Hermite and Gegenbauer polynomials
DOI10.1080/10652469.2015.1114483zbMath1337.42027OpenAlexW2292691341MaRDI QIDQ2790246
Neila Ben Romdhane, Mohamed Gaied
Publication date: 3 March 2016
Published in: Integral Transforms and Special Functions (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/10652469.2015.1114483
momentsgenerating functionsinversion formula\(d\)-dimensional functional vectorcomponent sets\(d\)-symmetric classical \(d\)-orthogonal polynomials
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis (42C05)
Related Items (4)
Cites Work
- Unnamed Item
- \(d\)-orthogonal polynomials and \(\mathfrak {su}(2)\)
- Higher-order matching polynomials and \(d\)-orthogonality
- On \(d\)-symmetric classical \(d\)-orthogonal polynomials
- Two-dimensional orthogonal polynomials, their associated sets and the co- recursive sets
- A general theorem on inversion problems for polynomial sets
- Classical \(2\)-orthogonal polynomials and differential equations
- Operational formulas connected with two generalizations of Hermite polynomials
- Semiclassical multiple orthogonal polynomials and the properties of Jacobi-Bessel polynomials
- Über die Jacobischen Polynome und zwei verwandte Polynomklassen
- Some discrete multiple orthogonal polynomials
- \(d\)-orthogonality of Humbert and Jacobi type polynomials
- Connection coefficients between Boas--Buck polynomial sets
- Automorphisms of the Heisenberg–Weyl algebra and d-orthogonal polynomials
- L'orthogonalité et les récurrences de polynômes d'ordre supérieur à deux
- LES POLYNÔMES ORTHOGONAUX „CLASSIQUES“ DE DIMENSION DEUX
- On semi‐classical d‐orthogonal polynomials
- Dunkl–Appelld-orthogonal polynomials
This page was built for publication: A generalization of the symmetric classical polynomials: Hermite and Gegenbauer polynomials