A $p$-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties
From MaRDI portal
Publication:2792352
DOI10.1090/mcom/3029zbMath1402.11099arXiv1210.2739OpenAlexW2146275364WikidataQ122894345 ScholiaQ122894345MaRDI QIDQ2792352
William A. Stein, Jan Steffen Müller, Jennifer S. Balakrishnan
Publication date: 9 March 2016
Published in: Mathematics of Computation (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1210.2739
Abelian varieties of dimension (> 1) (11G10) Arithmetic aspects of modular and Shimura varieties (11G18) (L)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture (11G40) Heights (11G50)
Related Items
On pairs of \(p\)-adic \(L\)-functions for weight-two modular forms ⋮ Quadratic Chabauty and 𝑝-adic Gross–Zagier ⋮ Quadratic Chabauty: \(p\)-adic heights and integral points on hyperelliptic curves ⋮ Explicit Vologodsky integration for hyperelliptic curves ⋮ Computing integral points on hyperelliptic curves using quadratic Chabauty ⋮ Explicit quadratic Chabauty over number fields ⋮ Euler characteristics and their congruences in the positive rank setting
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Manin constant. (With an appendix by J. Cremona)
- Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic L-functions and their derivatives
- On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer
- \(p\)-adic height pairings. II
- The ``main conjectures of Iwasawa theory for imaginary quadratic fields
- The universal vectorial bi-extension and \(p\)-adic heights
- On the periods of modular forms
- Rational points of the group of components of a Néron model
- The Magma algebra system. I: The user language
- On the \(p\)-adic \(L\)-function of a modular form at a supersingular prime
- p-adic height pairings. I
- Canonical periods and congruence formulae
- Computation of \(p\)-adic heights and log convergence
- The Iwasawa Main Conjectures for \(\mathrm{GL}_{2}\)
- The complete classification of fibres in pencils of curves of genus two
- On the factors of the Jacobian variety of a modular function field
- Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves
- Algorithms for the arithmetic of elliptic curves using Iwasawa theory
- Computing canonical heights using arithmetic intersection theory
- Computing Local p-adic Height Pairings on Hyperelliptic Curves
- Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves
- Heights and Arakelov's Intersection Theory
- Arithmétique des courbes elliptiques et théorie d'Iwasawa
- Fonctions $L$ $p$-adiques, théorie d'Iwasawa et points de Heegner
- Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète
- On the height constant for curves of genus two, II
- Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero
- Explicit Coleman Integration for Hyperelliptic Curves
- Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one
- Periods of quadratic twists of elliptic curves
- Overconvergent modular symbols and $p$-adic $L$-functions
- Tata lectures on theta. II: Jacobian theta functions and differential equations. With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman, and H. Umemura