On the upper and lower estimates of norms in variable exponent spaces
DOI10.7153/MIA-19-07zbMath1355.46032arXiv1411.3461OpenAlexW2963160435MaRDI QIDQ2794805
Shalva Zviadadze, Nino Samashvili, Tengiz Kopaliani
Publication date: 11 March 2016
Published in: Mathematical Inequalities & Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1411.3461
Hardy-Littlewood maximal operatorlower \(q\)-estimatevariable exponent Lebesgue spaceupper \(p\)-estimate
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Maximal functions, Littlewood-Paley theory (42B25) Function spaces arising in harmonic analysis (42B35)
Related Items (1)
This page was built for publication: On the upper and lower estimates of norms in variable exponent spaces