Hasse-Schmidt Derivations on Grassmann Algebras
DOI10.1007/978-3-319-31842-4zbMath1350.15001OpenAlexW2490007025MaRDI QIDQ2799540
Letterio Gatto, Parham Salehyan
Publication date: 11 April 2016
Full work available at URL: https://doi.org/10.1007/978-3-319-31842-4
Cayley-Hamilton theoremSchubert calculusderivationsKorteweg-de Vries equationClifford algebraGrassmann algebrasvertex operatorsexterior algebramodulematrix exponentialKadomtsev-Petviashvili equationtensor algebraHasse-Schmidt derivationsboson-fermion correspondencegeneric linear recurrence sequences
Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) (37K10) Vector and tensor algebra, theory of invariants (15A72) Vertex operators; vertex operator algebras and related structures (17B69) Clifford algebras, spinors (15A66) Exterior algebra, Grassmann algebras (15A75) Research exposition (monographs, survey articles) pertaining to linear algebra (15-02) Matrix exponential and similar functions of matrices (15A16)
Related Items (11)
This page was built for publication: Hasse-Schmidt Derivations on Grassmann Algebras