A Bose-Einstein condensate in a 𝒫𝒯 symmetric double well
DOI10.1002/prop.201200080zbMath1338.81428OpenAlexW1539193342MaRDI QIDQ2812921
Dennis Dast, Jörg Main, Daniel Haag, R. Eichler, Holger Cartarius, Günter Wunner
Publication date: 13 June 2016
Published in: Fortschritte der Physik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1002/prop.201200080
Bose-Einstein condensatesGross-Pitaevskii equationdouble welltime-dependent variational principle\(\mathscr{PT}\) symmetry
Stability in context of PDEs (35B35) Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics (81Q05) NLS equations (nonlinear Schrödinger equations) (35Q55) Phase transitions (general) in equilibrium statistical mechanics (82B26) Many-body theory; quantum Hall effect (81V70) Finite-dimensional groups and algebras motivated by physics and their representations (81R05) Variational principles of physics (49S05) Nonselfadjoint operator theory in quantum theory including creation and destruction operators (81Q12)
Related Items (13)
Cites Work
- Visualization of Branch Points in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math>-Symmetric Waveguides
- Structure of a quantized vortex in boson systems
- Analytical solutions to a class of nonlinear Schrödinger equations with {\cal PT} -like potentials
- A non-Hermitian \mathcal{P}\mathcal{T} symmetric Bose–Hubbard model: eigenvalue rings from unfolding higher-order exceptional points
- Real Spectra in Non-Hermitian Hamiltonians Having<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="bold-script">P</mml:mi><mml:mi mathvariant="bold-script">T</mml:mi></mml:math>Symmetry
- Physical realization of -symmetric potential scattering in a planar slab waveguide
This page was built for publication: A Bose-Einstein condensate in a 𝒫𝒯 symmetric double well