Height estimate for special Weingarten surfaces of elliptic type in 𝕄²(𝕔)×ℝ
From MaRDI portal
Publication:2814358
DOI10.1090/S2330-1511-2014-00005-5zbMath1341.53014MaRDI QIDQ2814358
Publication date: 21 June 2016
Published in: Proceedings of the American Mathematical Society, Series B (Search for Journal in Brave)
Related Items
Classes of Weingarten Surfaces in S^2xR ⋮ Rotational symmetry of Weingarten spheres in homogeneous three-manifolds ⋮ Constructions of \(H_r\)-hypersurfaces, barriers and Alexandrov theorem in \(\mathbb H^n\times\mathbb R\)
Cites Work
- The structure of complete embedded surfaces with constant mean curvature
- Simply connected constant mean curvature surfaces in \(\mathbb H^2\times\mathbb R\)
- The Codazzi equation for surfaces
- Complete surfaces with positive extrinsic curvature in product spaces
- Height estimates for surfaces with positive constant mean curvature in \(\mathbb M^2\times\mathbb R\)
- Uniqueness, symmetry, and embeddedness of minimal surfaces
- Differential geometry in the large. Seminar lectures New York University 1946 and Stanford University 1956. With a preface by S. S. Chern.
- The geometry of properly embedded special surfaces in \(\mathbb{R}^ 3\); e.g., surfaces satisfying \(aH+bK=1\), where \(a\) and \(b\) are positive
- Constant positive 2-mean curvature hypersurfaces
- Classification of rotational special Weingarten surfaces of minimal type in \({\mathbb{S}^2 \times \mathbb{R}}\) and \({\mathbb{H}^2 \times \mathbb{R}}\)
- Embedded positive constant r-mean curvature hypersurfaces in Mm × R
- On Special W-Surfaces
- Constant Mean Curvature Surfaces in Hyperbolic Space
- Classification des surfaces de type Delaunay
- Symmetry of properly embedded special Weingarten surfaces in $\mathbf {H}^3$
- [https://portal.mardi4nfdi.de/wiki/Publication:4875671 Sur les surfaces de Weingarten sp�ciales de type minimal]
- Umbilical Points and W-Surfaces
- The topology and geometry of embedded surfaces of constant mean curvature