On the homogenization of thin perforated walls of finite length
From MaRDI portal
Publication:2814643
DOI10.3233/ASY-151350zbMath1346.35011MaRDI QIDQ2814643
Kersten Schmidt, Adrien Semin, Bérangère Delourme
Publication date: 22 June 2016
Published in: Asymptotic Analysis (Search for Journal in Brave)
Asymptotic expansions of solutions to PDEs (35C20) Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation (35J05) Homogenization in context of PDEs; PDEs in media with periodic structure (35B27)
Related Items (4)
On the homogenization of the acoustic wave propagation in perforated ducts of finite length for an inviscid and a viscous model ⋮ On the homogenization of the Helmholtz problem with thin perforated walls of finite length ⋮ Homogenization of the acoustic transmission on periodically perforated plates interacting with potential mean flow ⋮ Perfect Brewster transmission through ultrathin perforated films
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Approximate models for wave propagation across thin periodic interfaces
- Asymptotics of the solution of a Dirichlet problem in an angular domain with a periodically changing boundary
- Effective boundary conditions for laminar flows over periodic rough boundaries
- Diffraction at a curved grating: TM and TE cases, homogenization
- Field behavior near the edge of a microstrip antenna by the method of matched asymptotic expansions
- Approximate transmission conditions through a rough thin layer: The case of periodic roughness
- High order multi-scale wall-laws, Part I: The periodic case
- Neumann problem in angular regions with periodic and parabolic perturbations of the boundary
- Asymptotics of the Poisson Problem in Domains with Curved Rough Boundaries
- ON THE THEORETICAL JUSTIFICATION OF POCKLINGTON'S EQUATION
- INTERACTIONS BETWEEN MODERATELY CLOSE INCLUSIONS FOR THE LAPLACE EQUATION
- General interface problems—I
- Matching of asymptotic expansions for waves propagation in media with thin slots II: The error estimates
- Matching of Asymptotic Expansions for Wave Propagation in Media with Thin Slots I: The Asymptotic Expansion
- GENERALIZED IMPEDANCE BOUNDARY CONDITIONS FOR SCATTERING BY STRONGLY ABSORBING OBSTACLES: THE SCALAR CASE
This page was built for publication: On the homogenization of thin perforated walls of finite length