Guaranteed velocity error control for the pseudostress approximation of the Stokes equations
DOI10.1002/num.22056zbMath1401.76083OpenAlexW2346649448MaRDI QIDQ2821187
Carsten Carstensen, C. Merdon, Philipp Bringmann
Publication date: 16 September 2016
Published in: Numerical Methods for Partial Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1002/num.22056
Stokes equationsadaptive finite element methoda posteriori error estimationCrouzeix-Raviart elementnonconforming finite element methodpseudostress finite element method
Numerical computation using splines (65D07) Error bounds for boundary value problems involving PDEs (65N15) Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Finite element methods applied to problems in fluid mechanics (76M10)
Related Items (5)
Cites Work
- Unnamed Item
- Fully computable a posteriori error estimates for the Stokes equation without the global inf-sup constant
- A unified framework for a posteriori error estimation for the Stokes problem
- Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis
- Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality
- A posteriori error estimators for the Stokes equations
- A posteriori error estimator for nonconforming finite element methods
- A posteriori error estimates for nonconforming finite element methods
- Effective postprocessing for equilibration a posteriori error estimators
- Towards discrete Velte decompositions and narrow bounds for inf-sup constants
- Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem
- Quasi-optimal Adaptive Pseudostress Approximation of the Stokes Equations
- Estimator Competition for Poisson Problems
- A Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem
- A Multigrid Method for the Pseudostress Formulation of Stokes Problems
- Least-Squares Methods for Incompressible Newtonian Fluid Flow: Linear Stationary Problems
- A posteriori error estimators for nonconforming finite element methods
- Reliable a posteriori error control for nonconforming finite element approximation of Stokes flow
- Computational Survey on A Posteriori Error Estimators for the Crouzeix–Raviart Nonconforming Finite Element Method for the Stokes Problem
- Finite Elements
This page was built for publication: Guaranteed velocity error control for the pseudostress approximation of the Stokes equations