Diffusive Approximation of a Time-Fractional Burger's Equation in Nonlinear Acoustics
DOI10.1137/16M1062491zbMath1443.65275arXiv1602.07205OpenAlexW2962928211MaRDI QIDQ2821707
Publication date: 23 September 2016
Published in: SIAM Journal on Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1602.07205
fractional derivativesnonlinear acousticsshock-capturing schemesBurger's equationdiffusive representationStrang splitting
KdV equations (Korteweg-de Vries equations) (35Q53) Nonlinear waves in solid mechanics (74J30) Fractional derivatives and integrals (26A33) First-order nonlinear hyperbolic equations (35L60) Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems (65M99) Fractional partial differential equations (35R11)
Related Items (10)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators
- Optimization of the collocation inversion method for the linear viscoelastic homogenization
- General formulation of the dispersion equation in bounded visco-thermal fluid and application to some simple geometries
- An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives
- Numerical solutions of coupled Burgers equations with time- and space-fractional derivatives
- Efficient solution of a wave equation with fractional-order dissipative terms
- Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme
- Finite difference approximations for a fractional advection diffusion problem
- Representations with poles and cuts for the time-domain simulation of fractional systems and irrational transfer functions
- Exponential stabilization of Volterra integral equations with singular kernels
- Fractal Burgers equations
- Non-classical shocks and kinetic relations: Scalar conservation laws
- An implementation of Shor's \(r\)-algorithm
- Wave propagation in a fractional viscoelastic Andrade medium: diffusive approximation and numerical modeling
- An improved non-classical method for the solution of fractional differential equations
- Biot-JKD model: simulation of 1D transient poroelastic waves with fractional derivatives
- Weighted average finite difference methods for fractional diffusion equations
- Approximation of the Erdélyi--Kober Operator with Application to the Time-Fractional Porous Medium Equation
- Discretized Fractional Calculus
- Operator splitting for the KdV equation
- Diffusive representation of pseudo-differential time-operators
- Well-Posedness and Stabilizability of a Viscoelastic Equation in Energy Space
- Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later
- Finite Volume Methods for Hyperbolic Problems
- Volterra series for solving weakly non-linear partial differential equations: application to a dissipative Burgers’ equation
- An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations
- Erdélyi-Kober fractional diffusion
- Resonant oscillations in closed tubes
- DIFFUSIVE REPRESENTATIONS FOR THE ANALYSIS AND SIMULATION OF FLARED ACOUSTIC PIPES WITH VISCO-THERMAL LOSSES
- Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves
This page was built for publication: Diffusive Approximation of a Time-Fractional Burger's Equation in Nonlinear Acoustics