Some mathematical remarks on the polynomial selection in NFS
DOI10.1090/mcom/3112zbMath1359.11031arXiv1403.0184OpenAlexW2964124869MaRDI QIDQ2826687
Armand Lachand, Razvan Barbulescu
Publication date: 18 October 2016
Published in: Mathematics of Computation (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1403.0184
binary quadratic formdiscrete logarithmfundamental discriminantinteger factorizationnumber field sieveDickman's functionfriable numberfriability probabilityMurphy's alpha function
Forms of degree higher than two (11E76) Number-theoretic algorithms; complexity (11Y16) Applications of sieve methods (11N36) Distribution of integers with specified multiplicative constraints (11N25) Factorization (11Y05)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Friable values of binary forms
- On the number of positive integers \(\leq x\) and free of prime factors \(>y\)
- Sur le nombre des entiers sans grand facteur premier. (On the number of integers without large prime factor)
- Séminaire de théorie des nombres, Paris, France 1988-1989
- Integers without large prime factors
- Approximate formulas for some functions of prime numbers
- On polynomial selection for the general number field sieve
- Factorization of a 768-Bit RSA Modulus
- Entiers Sans Grand Facteur Premier En Progressions Arithmetiques
- Discrete logarithms and local units
- Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method
- VALEURS FRIABLES D'UNE FORME QUADRATIQUE ET D'UNE FORME LINEAIRE
- Moyennes de certaines fonctions multiplicatives sur les entiers friables, 2
- Selecting polynomials for the Function Field Sieve
- The Number Field Sieve in the Medium Prime Case
This page was built for publication: Some mathematical remarks on the polynomial selection in NFS