Dynamical multifractal zeta-functions and fine multifractal spectra of graph-directed self-conformal constructions
DOI10.1017/etds.2014.140zbMath1366.37013arXiv1411.5530OpenAlexW3100721922MaRDI QIDQ2827503
Publication date: 20 October 2016
Published in: Ergodic Theory and Dynamical Systems (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1411.5530
pressurelarge deviationHausdorff dimensionzeta functionmultifractalBowen's formulagraph-directed self-conformal set
Ergodic theorems, spectral theory, Markov operators (37A30) Thermodynamic formalism, variational principles, equilibrium states for dynamical systems (37D35) Hausdorff and packing measures (28A78) Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc. (37C30) Dimension theory of smooth dynamical systems (37C45)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Thermodynamic formalism and applications to dimension theory
- Ergodic limits on the conformal repellers
- An analogue of the prime number theorem for closed orbits of Axiom A flows
- Fractal strings and multifractal zeta functions
- Large deviation principles for stationary processes
- Hausdorff dimension of quasi-circles
- Self-conformal multifractal measures
- Mathematical theory of nonequilibrium steady states. On the frontier of probability and dynamical systems.
- Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages.
- On the distribution of long-term time averages on symbolic space
- Relative multifractal analysis
- Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. II: non-linearity, divergence points and Banach space valued spectra
- On periodic points
- Multifractal and higher-dimensional zeta functions
- RECURRENCE, DIMENSION AND ENTROPY
- Multifractal analysis of Birkhoff averages on ‘self-affine’ symbolic spaces
- Multifractal Decompositions of Digraph Recursive Fractals
- Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval
- Multifractal analysis in symbolic dynamics and distribution of pointwise dimension forg-measures
- Random Self-Similar Multifractals
- A multifractal zeta function for Gibbs measures supported on cookie-cutter sets
- Towards zeta functions and complex dimensions of multifractals
- Fractal Geometry, Complex Dimensions and Zeta Functions
- Asymptotic probabilities and differential equations
This page was built for publication: Dynamical multifractal zeta-functions and fine multifractal spectra of graph-directed self-conformal constructions