The raising steps method: applications to the \(\bar{\partial}\) equation in Stein manifolds
From MaRDI portal
Publication:282792
DOI10.1007/s12220-015-9576-8zbMath1354.32025arXiv1312.7648OpenAlexW2002513778MaRDI QIDQ282792
Publication date: 12 May 2016
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1312.7648
(overlinepartial) and (overlinepartial)-Neumann operators (32W05) Integral representations; canonical kernels (Szeg?, Bergman, etc.) (32A25)
Related Items
On the \(L^{r}\) Hodge theory in complete non compact Riemannian manifolds ⋮ Certain Contributions to the $$\bar {\partial }$$ -Problem ⋮ The LIR method. \(L^{r}\) solutions of elliptic equation in a complete Riemannian manifold ⋮ An Andreotti-Grauert theorem with $L^r$ estimates
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Un théorème de dualité
- \(L^ p\) and Lipschitz estimates for the \({\bar\partial}\)-equation and the \({\bar\partial}\)-Neumann problem
- Optimal Lipschitz and \(L^p\) regularity for the equation \(\overline\partial u=f\) on strongly pseudo-convex domains
- Hölder estimates on convex domains of finite type
- Sharp estimates for \(\bar\partial\) on convex domains of finite type
- Cohomologie Complexe Et Applications
- Formules intégrales pour les formes différentielles de type $(p,q)$ dans les variétés de Stein
- Mesures de Carleson d'ordre $\alpha$ et solutions au bord de l'équation $\overline\partial$
- Optimal L p and Holder Estimates for the Kohn Solution of the ∂ -Equation on Strongly Pseudoconvex Domains
- An Andreotti-Grauert theorem with $L^r$ estimates
- Hölder and Lp estimates for solutions of ∂u = f in strongly pseudoconvex domains
- Integral Representation Formulas and $L^p$-Estimates for the $\bar{\partial}$-Equation.
- The Neumann Problem for the Cauchy-Riemann Complex. (AM-75)
- \(L^p\) estimates for the Cauchy-Riemann operator on \(q\)-convex intersections in \(\mathbb{C}^n\)
- \(L^p\) estimates on convex domains of finite type