Capitulation of the 2-class group of some cyclic number fields with large degree
From MaRDI portal
Publication:2830674
DOI10.1002/mana.201500355zbMath1401.11148OpenAlexW2293133308MaRDI QIDQ2830674
Publication date: 28 October 2016
Published in: Mathematische Nachrichten (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1002/mana.201500355
Galois theory (11R32) Class field theory (11R37) Class numbers, class groups, discriminants (11R29) Iwasawa theory (11R23)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Capitulation of the 2-ideal classes of biquadratic fields whose class field differs from the Hilbert class field
- A note on capitulation problem for number fields. I, II
- Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94
- On the Iwasawa \(\lambda_2\)-invariants of certain families of real quadratic fields
- On Iwasawa \(\lambda_p\)-invariants of relative real cyclic extensions of degree \(p\)
- Capitulation des 2-classes d'idéaux de certains corps biquadratiques cycliques
- The Cyclotomic Z 2 -Extension of Imaginary Quadratic Fields
- Kuroda's class number formula
- Capitulation des 2-classes d'idéaux de Q(\sqrt 2,\sqrt d) où d est un entier naturel sans facteurs carrés
- Real Quadratic Number Fields with 2-Class Group of Type (2,2).