On estimation of stress–strength parameter using record values from proportional hazard rate models
DOI10.1080/03610926.2014.948727zbMath1348.62061OpenAlexW2500957752MaRDI QIDQ2830791
No author found.
Publication date: 31 October 2016
Published in: Communications in Statistics - Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03610926.2014.948727
record valuesmaximum likelihood estimatoruniformly minimum variance unbiased estimatorBayesian estimationbootstrap confidence intervalproportional hazard rate model
Point estimation (62F10) Bayesian inference (62F15) Bootstrap, jackknife and other resampling methods (62F40) Reliability and life testing (62N05)
Related Items (8)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Inference about reliability parameter with gamma strength and stress
- Estimation of P[ \(Y < X \) for generalized exponential distribution]
- A note on inference for \(P(X<Y)\) for right truncated exponentially distributed data
- Likelihood and Bayesian estimation of \(\mathrm{Pr}(X \leq Y)\) using lower record values from the generalized exponential distribution
- Estimation of \(P[Y<X\) for generalized Pareto distribution]
- Nonparametric confidence and tolerance intervals from record values data
- Reliability estimation in stress–strength models: an MCMC approach
- Comparing the fisher information in record values and iid observations
- On estimation ofR=P(Y<X) for exponential distribution under progressive type-II censoring
- Estimation ofP(X>Y) with Topp–Leone distribution
- Estimation of Pr(X < Y) Using Record Values in the One and Two Parameter Exponential Distributions
- Estimation ofP(Y < X) for the Three-Parameter Generalized Exponential Distribution
This page was built for publication: On estimation of stress–strength parameter using record values from proportional hazard rate models