Reduction theorems for Sobolev embeddings into the spaces of Hölder, Morrey and Campanato type
From MaRDI portal
Publication:2832676
DOI10.1002/mana.201500043zbMath1365.46025OpenAlexW2341522473MaRDI QIDQ2832676
Publication date: 11 November 2016
Published in: Mathematische Nachrichten (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1002/mana.201500043
Sobolev embeddingsreduction operatorrearrangement-invariant function spacesPólya-Szegő principlegeneralized CampanatoMorrey and Hölder spaces
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35)
Related Items
Cites Work
- Optimal Gaussian Sobolev embeddings
- Sobolev embeddings into spaces of Campanato, Morrey, and Hölder type
- Sobolev embeddings into BMO, VMO, and \(L_{\infty}\)
- Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms
- Higher-order Sobolev embeddings and isoperimetric inequalities
- Embeddings of Sobolev-type spaces into generalized Hölder spaces involving \(k\)-modulus of smoothness
- Non-compact and sharp embeddings of logarithmic Bessel potential spaces into Hölder-type spaces
- On functions of bounded mean oscillation
- Optimal Sobolev imbeddings
- On the modulus of continuity of weakly differentiable functions