An explicit hybrid estimate for $L(1/2+it,\chi )$
From MaRDI portal
Publication:2833615
DOI10.4064/aa8433-7-2016zbMath1401.11121arXiv1510.00950OpenAlexW2962780074MaRDI QIDQ2833615
Publication date: 18 November 2016
Published in: Acta Arithmetica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1510.00950
exponential sumsDirichlet \(L\)-functionsexplicit estimatesWeyl methodvan der Corput methodhybrid estimatespowerful modulus
Related Items (2)
Estimates for \(L\)-functions in the critical strip under GRH with effective applications ⋮ Sums with the Möbius function twisted by characters with powerful moduli
Cites Work
- Unnamed Item
- Unnamed Item
- An explicit van der Corput estimate for \(\zeta(1/2+it)\)
- Computing Dirichlet character sums to a power-full modulus
- On the Phragmén-Lindelöf theorem and some applications
- Hybrid bounds for Dirichlet L-functions
- Explicit estimates for the Riemann zeta function
- Explicit approximate functional equations for various classes of Dirichlet series
- An alternative to Riemann-Siegel type formulas
- HYBRID BOUNDS FOR DIRICHLET L-FUNCTIONS II
- On prime numbers in an arithmetic progression with a prime-power difference
This page was built for publication: An explicit hybrid estimate for $L(1/2+it,\chi )$