Relational graph models, Taylor expansion and extensionality
DOI10.1016/J.ENTCS.2014.10.014zbMath1337.03022OpenAlexW2115393058WikidataQ113317840 ScholiaQ113317840MaRDI QIDQ283769
Giulio Manzonetto, Domenico Ruoppolo
Publication date: 13 May 2016
Full work available at URL: https://doi.org/10.1016/j.entcs.2014.10.014
Functional programming and lambda calculus (68N18) Logic in computer science (03B70) Substructural logics (including relevance, entailment, linear logic, Lambek calculus, BCK and BCI logics) (03B47) Mathematical aspects of software engineering (specification, verification, metrics, requirements, etc.) (68N30) Combinatory logic and lambda calculus (03B40)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Intuitionistic differential nets and lambda-calculus
- The parametric lambda calculus. A metamodel for computation.
- The lambda calculus. Its syntax and semantics. Rev. ed.
- Uniformity and the Taylor expansion of ordinary lambda-terms
- Type theories, normal forms, and \(D_{\infty}\)-lambda-models
- Algebras and combinators
- From computation to foundations via functions and application: The \(\lambda\)-calculus and its webbed models
- The differential lambda-calculus
- What is a categorical model of the differential and the resource λ-calculi?
- A characterization of the Taylor expansion of lambda-terms
- Böhm’s Theorem for Resource Lambda Calculus through Taylor Expansion
- A General Class of Models of $\mathcal{H}^*$
- Not Enough Points Is Enough
- A Syntactic Characterization of the Equality in Some Models for the Lambda Calculus
- On the characterization of models of H
- Logical Approaches to Computational Barriers
- Intersection types for \(\lambda\)-trees
This page was built for publication: Relational graph models, Taylor expansion and extensionality