Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Embeddings of Müntz spaces: The Hilbertian case

From MaRDI portal
Publication:2838958
Jump to:navigation, search

DOI10.1090/S0002-9939-2012-11681-8zbMath1282.46026arXiv1110.5422OpenAlexW2025740318MaRDI QIDQ2838958

Dan Timotin, S. Waleed Noor

Publication date: 4 July 2013

Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1110.5422

zbMATH Keywords

lacunary sequenceSchatten-von Neumann classesMüntz spaceembedding measure


Mathematics Subject Classification ID

Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Hilbert spaces of continuous, differentiable or analytic functions (46E20) Banach spaces of continuous, differentiable or analytic functions (46E15)


Related Items

Asymptotic isometries for lacunary Müntz spaces and applications, Embeddings of Müntz spaces: composition operators, Lacunary Müntz spaces: isomorphisms and Carleson embeddings, \(L^2\)-Müntz spaces as model spaces, Müntz spaces and special Bloch type inequalities, Embeddings of Müntz Spaces in



Cites Work

  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Embedding theorems for Müntz spaces
  • Geometry of Müntz spaces and related questions
  • Essential norms of weighted composition operators on Müntz spaces
  • Perturbations in Müntz's theorem
  • \(c_ p\)
  • An introduction to frames and Riesz bases
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:2838958&oldid=15769357"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 3 February 2024, at 20:21.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki