Pointwise multipliers of Calderón-Lozanovskiǐ spaces
DOI10.1002/mana.201100156zbMath1288.46023arXiv1206.1860OpenAlexW1631242367MaRDI QIDQ2841690
Karol Leśnik, Lech Maligranda, Pawel Kolwicz
Publication date: 26 July 2013
Published in: Mathematische Nachrichten (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1206.1860
symmetric spacessequence spacesOrlicz spacespointwise multipliersBanach function spacespointwise multiplicationBanach ideal spacesCalderón-Lozanovskiĭ spaces
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Sequence spaces (including Köthe sequence spaces) (46A45) Banach lattices (46B42)
Related Items (28)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Rademacher functions in symmetric spaces
- Operators preserving disjointness on rearrangement invariant spaces
- Absolutely continuous embeddings of rearrangement-invariant spaces
- Pointwise multipliers of Orlicz spaces
- On products of Orlicz spaces
- Ultrasymmetric Orlicz spaces
- Products and factors of Banach function spaces
- On the Maurey type factorization of linear operators with values in Musielak-Orlicz spaces
- A factorization theorem in Banach lattices and its application to Lorentz spaces
- Landau type theorem for Orlicz spaces
- Generalized perfect spaces
- Interpolation of operators of weak type between rearrangement invariant function spaces
- ON THE DEGENERATION OF THE CLASS OF DIFFERENTIABLE SUPERPOSITION OPERATORS IN FUNCTION SPACES
- Symmetric structures in Banach spaces
- Indices, convexity and concavity of Calderón-Lozanovskii spaces
- Interpolation of weighted Banach lattices. A characterization of relatively decomposable Banach lattices
- ULTRASYMMETRIC SPACES
- Intermediate spaces and interpolation, the complex method
- Generating Classes of Perfect Banach Sequence Spaces
This page was built for publication: Pointwise multipliers of Calderón-Lozanovskiǐ spaces