The Complex Monge–Ampère Equation in Kähler Geometry
From MaRDI portal
Publication:2841731
DOI10.1007/978-3-642-36421-1_2zbMath1293.32045OpenAlexW1538012765MaRDI QIDQ2841731
Publication date: 29 July 2013
Published in: Lecture Notes in Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/978-3-642-36421-1_2
Related Items (14)
Griffiths extremality, interpolation of norms, and Kähler quantization ⋮ Extremizers of the \(J\) functional with respect to the \(d_1\) metric ⋮ The Mabuchi geometry of finite energy classes ⋮ Geodesics in the space of relatively Kähler metrics ⋮ A Wess-Zumino-Witten type equation in the space of Kähler potentials in terms of Hermitian-Yang-Mills metrics ⋮ Monge-Ampère type equations on almost Hermitian manifolds ⋮ On the Alesker-Verbitsky conjecture on hyperKähler manifolds ⋮ WEAK GEODESIC RAYS IN THE SPACE OF KÄHLER POTENTIALS AND THE CLASS ⋮ Geodesic rays and Kähler–Ricci trajectories on Fano manifolds ⋮ Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry ⋮ The space of almost calibrated \((1,1)\)-forms on a compact Kähler manifold ⋮ Geometric pluripotential theory on Kähler manifolds ⋮ Optimal asymptotic of the \(J\) functional with respect to the \(d_1\) metric ⋮ Pluripotential Theory and Monge–Ampère Foliations
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A variational approach to complex Monge-Ampère equations
- On Calabi's conjecture for complex surfaces with positive first Chern class
- Kähler-Einstein metrics on Fano surfaces
- Réduction du cas positif de l'équation de Monge-Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité
- A gradient estimate in the Calabi-Yau theorem
- Constant scalar curvature metrics on toric surfaces
- Geometry of Kähler metrics and foliations by holomorphic discs
- Über nichtlineare, konkave elliptische Differentialgleichungen. (On nonlinear concave elliptic differential equations)
- K-energy maps integrating Futaki invariants
- Some symplectic geometry on compact Kähler manifolds. I
- Subharmonicity for uniform algebras
- The Dirichlet problem for a complex Monge-Ampère equation
- Méthodes de contrôle optimal en analyse complexe. I: Résolution d'équation de Monge Ampère
- The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function
- Kähler-Einstein metrics with positive scalar curvature
- Regularity of the degenerate Monge-Ampère equation on compact Kähler manifolds
- On modified Mabuchi functional and Mabuchi moduli space of Kähler metrics on toric bundles
- The space of Kähler metrics.
- Interior regularity of the complex Monge-Ampère equation in convex domains
- The K-energy on hypersurfaces and stability
- Equations of Monge-Ampère type on compact Hermitian manifolds.
- A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry
- Geodesics in the space of Kähler metrics
- Lectures on Stability and Constant Scalar Curvature
- The Calabi–Yau Theorem
- Sur la Structure du Groupe d’Homéomorphismes Analytiques d’une Certaine Variété Kaehlérinne
- Fully Nonlinear, Uniformly Elliptic Equations Under Natural Structure Conditions
- The dirichlet problem for nonlinear second-order elliptic equations. II. Complex monge-ampère, and uniformaly elliptic, equations
- Classical solutions of fully nonlinear, convex, second-order elliptic equations
- Complex Monge-Ampere and Symplectic Manifolds
- Foliations and complex monge-ampère equations
- Calabi's conjecture and some new results in algebraic geometry
- On the ricci curvature of a compact kähler manifold and the complex monge-ampére equation, I
- A remark on the preceding paper of yau
- Uniqueness and stability for the complex Monge-Ampere equation on compact Kahler manifolds
This page was built for publication: The Complex Monge–Ampère Equation in Kähler Geometry