Basics of Modern Mathematical Statistics
DOI10.1007/978-3-642-39909-1zbMath1401.62006OpenAlexW1781762476MaRDI QIDQ2842847
Thorsten Dickhaus, Vladimir Spokoiny
Publication date: 16 August 2013
Published in: Springer Texts in Statistics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/978-3-642-39909-1
maximum likelihood estimationasymptotic propertiesHellinger distanceBayes estimationsemiparametric estimationridge regressionlinear modelsKullback-Leibler divergencelinear regressionmethod of momentsregression estimationM-estimationCramer-Rao inequalityGlivenko-Cantelli theoremNeyman-Pearson testgeneralized regressionquadratic log likelihoodpiecewise methodquasi maximum likelihood approach
Linear inference, regression (62Jxx) Parametric inference (62Fxx) Introductory exposition (textbooks, tutorial papers, etc.) pertaining to statistics (62-01)
Related Items (4)
This page was built for publication: Basics of Modern Mathematical Statistics